
4. With the passage of a pressure pulse through an interface between two media in the 
case when the wave resistance (pc) of the second medium is lower (lower boundary of the 
packet, free surface), the reflected compression wave changes sign but the velocity remains 
the same. In the case when the wave resistance of the second medium is greater (upper boun- 
dary of the packet, well bots mouth of the central tube), the reflected compression wave 
retains its sign and the velocity changes to the opposite value. 

5. The transmitted pressure pulse always retains the sign of the transmitted wave. 
Meanwhile, the amplitudes of the pressure pulses and the velocities of the incident, trans- 
mitted, and reflected (from the interface) waves are such as to satisfy the condition of 
equality of the total pressures and the normal components of velocity at the boundary. 

NOTATION 

P(Z, t), pressure in the channel; q(z, t), volumetric flow rate of liquid; p, density 
of liquid; c, velocity of dynamic disturbances in the fluid; ~, shear stress; 6 = f/Z, cor- 
rected hydraulic radius of pipe; f, cross section of channel; s perimeter of channel; ~, 
gas content; p~, ps density of gas and liquid; cR, ci, speed of sound in the gas and liquid; 
Pg0, densis o~ gas under atmospheric conditions [at P = Patm); K, N, constants in the expo- 
nential theological model of the liquid; Kre f, reflection coefficient; L, length of channel; 
X, distance from the bottom to the lower boundary of the paket; D, D2, inside and outside 
diameters of pipe; D I, inside diameter of external pipe of the annular channel; Hgp, height 
of the gasified packet. 
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NUMERICAL INVESTIGATION OF NONEQUILIBRIUM TWO-PHASE FLOWS IN AXISYMMETRIC 

LAVAL NOZZLES 

P. M. Kolesnikov and V. V. Leskovets UDC 533.6.011.3 

A computation algorithm is elucidated and results are presented of the numerical 
solution of two-phase flow equations. A comparison is made with the experimental 
and computed data of other authors. 

Flows of two-phase mixtures consisting of a gas and particles or drops suspended therein 
are extensively widespread in both nature and in technical applications. A set of typical 
examples of such two-phase flows can be presented. Certain of the natural phenomena are the 
motion of raindrops or snow in clouds and mist, dust and sand storms, scattering of particles 
of different origin in the atmosphere, etc. A broad circle of applied problems is associated 
with the flow and application of aerosols of different kinds, intensification of the heat 
and mass transfer processes in chemical production, natural gas transport, thermal and mech- 
anical treatment of friable materials, etc. 

Aviation and cosmonautics also inevitably encounter the solution of theoretical problems 
and the performance of extensive testing investigations in this area. Great value is attrib- 

A. B. Lykov Institute of Mass and Heat Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 8, No. i, pp. 27-35, Jan- 
uary, 1990. Original article submitted September 26, 1988. 

20 0022-0841/90/5801-0020512.50 �9 1990 Plenum Publishing Corporation 



uted, in particular, to the investigation of flows in nozzles. Determination of the local 
stream parameters and the specific impulse with particle lag in velocity and temperature 
taken into account during mixture expansion in the nozzle was the main direction of the 
first researches [1-2]. 

At this time researches are known, [3-5], say, where regularities of two-phase hetero- 
geneous stream motion are investigated in a more complex formulation in both the change in 
the stream components and in the nozzle configuration. Within the framework of a two-fluid 
(two-velocity and two-temperature) model of a continuous medium, solutions are obtained in 
this paper by using the build-up method and the Marsh method, that describe inviscid ideal 
gas flows without particles and flows of a gas mixture with foreign particles in the s~bsonic, 
transonic, and supersonic parts of a Laval nozzle. Solution of the problem in a two-dimen- 
sional formulation permits determination of the most important quantitative and qualitative 
characteristics of two-phase flows in nozzles: the site of particle incidence on the w,~ll 
and their quantity, the location of the particle limit lines (particle-free zones), lo~ses 
by dissipation, losses because of particle collision with the walls, and other inhomogeneous 
effects. 

The problem under consideration, which is important to many applications, includes a 
number of other situations, whose analysis and utilization are often necessary even in other 
cases for the solution of problems within the framework of an analogous model of a continu- 
ous medium. The study of problems of such type occurred initially in researches of Kh. A. 
Rakhmatulin [6], R. I. Nigmatulin [7, 8], A. N. Kraiko [7, 9], L. E. Sternin [3, 7, 9] as 
well as in investigations of other authors [10-13]. 

i. FORMULATION OF THE PROBLEM 

In addition to the assumptions made, as mentioned in [4], say, it is considered that 
the medium is two-fluid (two-velocity and two-temperature) [i, i0]. The real gas flow with 
particles therein is replaced by mutually-penetrating motion of the phases whose mass as dis- 
tributed continuously over the whole volume. There are here two velocities and two temp- 
eratures at each point of the flow and the ratio between the mass of particles in a certain 
sufficiently small volume and its magnitude is understood to be the particle phase density 
(particle "gas") in conformity with the hypothesis of mutually penetrating continua [6]~ It 
is also assumed that the distances in which the flow characteristics change substantially 
outside the surfaces of discontinuously are much greater than the spacings between particles, 
the Mach number of the relative particle motion is here less than critical while the viscosity 
and heat conductivity are taken into account only during gas and particle interaction pro- 
cesses. 

A cylindrical x, y, ~ , coordinate system whose OX axis agreed with the nozzle longitu- 
dinal axis (Fig. la) was used as initial coordinate system. The radial velocity componants 
is denoted by v and the velocity component along the OX axis by u, where this latter is as- 
sumed always possible. It is convenient to realize the two-dimensional flow computatio~s 
on meshes connected with the surface of the computation domain which requires a coordinate 
transformation. In this case the flow domain was rectified by replacement of the independent 
variables ~ = y/Y(x) or ~ = y/Ys(x). 

Initial Equations. The initial inviscid gas equations (continuity, momentum, enerI~y ) 
for an axisymmetric two-phase stationary flow are written in the following form [7, 13] 

v g p U  = O, Vt~uU -t- (gF),: = b'CR ,o~ (u~ - -  tz), VgOVU -l- (gp)~, - -  p = ( 1 ) 

cp 
VgPsTsU,~ = b~p~Cr - - -  (T  - -  T~). ( 2 )  

The equation of state and dependences for the coefficients C R and C~ are needed to close the 
system of equations. For the ideal gas model taken in this paper with a constant adiabatic 
index, the equation of state is written in the form 

k--1 
p = P [ / / o -  (u~ + vDl21. (3)  

k 
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Fig. i. Comparison of computation results on the Math num- 
ber distribution (solid lines): a) with data of a numerical 
solution [5] (dashed lines: r s = i0 Dm, z = 0.3; the numbers 
on the computed curves correspond to: i) axis; 2) wall of 
the nozzle); b) with experiment [19] (i) axis; 2) y = 0.25; 
3) 0.519; 4) 0.738; 5) 0.837; 6) 0.913; 7) wall). 

The depence obtained in [14] was used for the coefficient C R for the subsonic, trans- 
oinc, and supersonic flow modes. 

The expression from [2] with the Cavanaugh correction [15] taken into account for the 
influence of gas inertia and rarefaction: 

Ce = C~o Nuo/[ 1 + 3,42MNuo/(RePr)] , 

Nu. = 2+0 ,45 9Re ~176  C~o = 1,5W(pnr2Pr ) 

was u s e d  f o r  t h e  h e a t  e l i m i n a t i o n  c o e f f i c i e n t  Ca .  The  t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  m o l e -  
c u l a r  viscosity is set up by using the power law 

~1~o = (TITo) ~ 71. 

The change in Ps for AI203 as a function of the temperature is [16] 

p~ = 3 , 0 6 - - 0 , 9 6 7 . 1 0 - 3 ( T s - - 2 3 2 ~  [g/em3]. 

The initial system of equations consists of two subsystems (i), (3), and (2) describing 
the gas and particle flow. The first subsystem is of elliptic-hyperbolic type in the sub- 
and transonic parts of the Laval nozzle and is hyperbolic in the supersonic part. The sys- 
tem (2) is of hyperbolic type for u s > 0 which is ordinarily satisfied in nozzles. 

Boundary and Initial Conditions. The flow in the nozzle was separated into two sub- 
domains. The first, the sub- and transonic subdomain, is bounded on the left by the nozzle 
entrance section x = x0, on the right by the line x = x I at which the Math number determined 
from the "frozen" speed of sound equals 

The  s e c o n d  i s  t h e  s u p e r s o n i c  d o m a i n  b o u n d e d  on t h e  l e f t  by  x = x 1 a n d  on t h e  r i g h t  x = x c .  

Conditions for a completely frozen flow are given at the nozzle entrance. The flow is 
here assumed equilibrium and three boundary conditions [Ii] were given for the nonstationary 
analog of (I): 

i) Constancy of the total enthalpy 

k 
H 0 = - -  k--I 

2) Constancy of the entropy 

1 P + - ~ -  (u 2 + v 2) = const; 
P 

S = p lP~ '  = const; 

3) The velocity vector direction 

d 
vlu = ~ "-~x r(x)l~=~'" 

The particle parameters (except the density) at the entrance were assumed equal to the 
corresponding gas parameters 
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The condition of nonpenetration 

Z 
Os (xo, y) = - -  O (xo, ~). 

d 
v [x, Y ~)lla [x, Y (x)l = Y (x) 

dx 

was g i v e n  on t h e  n o z z l e  w a l l .  The s t a n d o f f  o f  p a r t i c l e  t r a j e c t o r i e s  f rom t h e  w a l l  c o r r e s -  
ponds t o  t h e  a p p e a r a n c e  o f  t h e  upper  b o u n d a r i e s  o f  t h e  p a r t i c l e s  ( t h e  p a r t i c l e  l i m i t  l i n e ) ,  
whose p o s i t i o n  i s  d e t e r m i n e d  by t h e  s o l u t i o n  o f  t h e  sy s t em ( 2 ) .  

Flow symmetry c o n d i t i o n s  were g i v e n  on t h e  n o z z l e  a x i s  

v = 0 ,  (~ )y  = (p)y = ~ ) y  = 0 .  

The i n i t i a l  d a t a  f o r  a n a l y s i s  o f  t h e  s u p e r s o n i c  domain were s e l e c t e d  a f t e r  c o m p u t a t i o n  o f  
t h e  f i r s t  sub-  and t r a n s o n i c  domains on t h e  c o o r d i n a t e  l i n e  x = x2 n e a r  t h e  min imal  no:~zle 
s e c t i o n  on which  t h e  Mach number i s  M ~ 1.01 on t h e  n o z z l e  a x i s .  To e l i m i n a t e  t h e  i n f i u e n c e  
o f  gas  p a r a m e t e r  i n t e r p o l a t i o n  on t h e  r i g h t  bounda ry  d u r i n g  c o m p u t a t i o n  o f  t h e  f i r s t  domain 
on t h e  f low p a r a m e t e r s  in  t h e  s u p e r s o n i c  domain i t  was assumed x 2 < x z, i . e . ,  t h e  computed 
domains  were made to  o v e r l a p .  

2. METHOD OF SOLUTION 

Solution of Sub- and Transonic Flow Problems. Solutions were sought successively in 
the first (sub- and transonic) and second (supersonic) domains, where step-by-step (Marsh) 
integration of (i), (3) and (2) along the longitudinal coordinate is most effective for 
purely supersonic flows. The stationary solutions in the sub- and transonic domain are ob- 
tained by the build-up method [Ii], i.e., by integration of nonstationary equations in time 
for stationary boundary conditions until changes in the solution become sufficiently small. 
In this case just the system (i), which is of mixed type in this domain (sub- and transonic), 
was replaced by the nonstationary system since the system (2) is of hyperbolic type even in 
the subsonic part by virtue of the condition u(x, y) > 0. The flow computation is rea]ized 
as follows. The stationary system (2) is integrated for known gas parameter fields belore 
the beginning of the calculation of the new step in time and the right sides for the ssstem 
(I) are computed and stored also. Then the stationary solution of the system (i) is fcund 
in the new time layer by the build-up method for fixed values of the right sides, and the 
procedure is later repeated. 

A finite-difference method was used for numerical integration of the system(l). The ex- 
plicit conservative MacCormack scheme [17] of second order accuracy was used for the differ- 
ence approximation of the equations. 

Solution of the Problem of Supersonic Stationary Two-phase Flow in Laval Nozzles. A 
two-step explicit-implicit scheme of the predictor-corrector type, also of second order ac- 
curacy [13], but without the constraints on the integration step because of the quantities 
C R, C~ governing the "hardness" of the system, were used to integrate the system (2) in the 
"hard" class. 

Let us represent the system (2) vectorally in new independent variables 

(A)x -~- (B)n @ C(A - - D )  : 0, (4)  

[ 1 j~ly2psu. ' 11 s 
A ~ v s  

I 
- 0  0 0 

0 C~/u~ 0 
C = 0 0 Ca/u~ 

_0  0 0 

I ] PsUs 
B = , ]Y~ (v~ - -  ~lYs~us) psvs  ; 

psT~ 

Oo !~ 
~lYsp~u~ v 0 

(C~/u~)(cv/cs) - _ T _ 

d 
Z.~ = Y8 (x). 

dx 
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Fig. 2. Mach number isoline distribution and location 
of limit lines of particles of different radii (i) 0.5 Dm; 
2) 3.0; 3) 8.5) for z = 0.32 (b) in the axisymmeric 
nozzle (a). 
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Fig. 3. Change of parameters on the axis and wall (T/T0, 9/90, 

P/P0, M) along the nozzle length (notation the same as in Fig. la), 
the dashes and line 3 are, respectively, the Mach number profile 
on the axis for a gas without particles and for a stream with 
r s = i pm. 

The difference scheme is written in the predictor stage as 

(A~+' - -  A~)/Ax + (B]+~ --. B~)/A n + C ~ (~]+1 _ 67+1) = 0, ( 5 )  

where the components of the vector 67 +I are obtained from the first step of the MacCormack 
scheme during integration of the equations of the system (I) while Y~psUs are obtained from 
(5) for the first component of the vector A. since the corresponding components of the vectors 
C and D are zero here. 

The corrector step is 

1 
(A~ +'  - -  A~)/Ax + [(fi;+l _ gT+l) + (By+, - -  B~)] ~ + 

+ c? +I/~ ( A ?  + ' / 2  - -  D7 +'/~) = O, 

C7 +I/2 = ( t ]  +'  + C7)/2, D7 +'/~ = (aT +'  - -  D?)/2. 

The term A~ +I/2 is obtained from the Taylor series expansion 

A~+1,2-= A~ +1 Ax (0A/0x)~+," 
2 

The d e r i v a t i v e  (OA/Ox)'] +I i s  d e t e r m i n e d  f rom [ 1 1 ] .  A f t e r  a number  o f  m a n i p u l a t i o n s ,  we 
finally obtain 

( 6 )  
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Fig. 4. Change in the loss of specific impulse: a) by dissipa- 
tion $p (curve i) and total losses SZ (2) for the nozzle [1] 
(see Fig. 2a) for z = 0.32 (dashed lines) and the nozzle from 
[5] for z = 0.3 (solid lines): b) by dissipation (curve 3) and 
the two-phase state (4) at the exit of the first nozzle and 
change in the mass flow rate coefficient (5) for different z. 

A~-- A__f_x (B~+~ -- B~) q- AxG~Df +' 

A7 +, = A,q ( 7 ) 
1 + Ax(] 7 

I ^ Ax 
A7 +' = A7 + (1 + A~cT) A7 +~ - ( a  + aA;? +~/') ~ (g7 +~ - gT+I) + 

+ 2ax ~2(" ~-~ c'7+'67+' + 67+~), c7 +'/~ - A~CTD7 +' ] x 

, (Ax)2 b~.+~C..+~/~ ]-' • ~,i 2 + ~xC7 +~/~ + - - - U -  ' ' ] " 

The components of the vector Df +I are obtained by the same algorithm as for 67 +I in 
the corrector step. Analysis of the stability of the scheme (5) and (8) results in a Courant 
type condition [18] 

Ax ~ A~lYj(vJu 8 - -  qY,~). 

The constraint obtained on the integration step does not result in a noticeable increa~,~e in 
the computation time, as computations showed. 

Utilization of the build-up method requires preliminary assignment of the condition for 
achieving convergence. The selection of such a condition is made on the basis of studying 
the nature of the change in the magnitude of a single nozzle pulse during the trial compu- 
tations. Damped vibrations of this quantity were observed in all cases. The flow is con- 
sidered steady if the magnitude of the single nozzle pulse changed by not more than 0.CI% 
in a time interval of i00 steps. 

3. RESULTS OF COMPUTATIONS 

Flow in an axisymmetric supersonic nozzle with a small radius of throat curvature R 2 = 
0.625 was computed to determine the possibilities and verify the numerical method [5, 19]. 
The nozzle conical sections were mated smoothly with the arcs of circles; the slope of the 
conical subsonic section was 45~ and of the conical supersonic section 15 ~ . Results of the 
computations were compared with results obtained in [5] by a n~erical method using a Mac- 
Cormack difference scheme and with experimental data without taking account of the two-phase 
state [19]. The initial data in both comparisons were taken equal to the corresponding para- 
meters in [5, 19]. Results of the computations on the Mach number distribution along the 
nozzle length on the axis and wall (curves 1 and 2, respectively) are presented in Fig. la, 
where the results obtained are displayed by solid lines while the data of [5] are dashed. 
The Mach number isoline distribution in the neighborhood of the nozzle critical section is 
shown in Fig. ib, where the parameter gradients are largest. The experimental data of [19] 
are denoted by geometric figures for different radii y while the curves display the Mach 
number isolines obtained by using the numerical method of this paper. Results of the pro- 
posed method are compared with data from [5] in a broad range of radii and weight fractions 
of particles (r s = i0 Bm, z = 0.3 in Fig. la). On the whole the agreement between the re- 
sults of the numerical solution and the data in [5] can be considered completely satisfac- 
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tory. Agreement between the computed and experimental data along the nozzle radius is good 
enough up to the value x < 1.0, but there are differences here in the neighborhood of the 
nozzle axis (Fig. ib). It is quite important to know the magnitude of the gasdynamic losses 
of specific impulse and the nature of the loss change along the nozzle channel for a computa- 
tion of the nozzle characteristics of real engineering apparatus. The specific impulse loss 
distribution due to dissipation and the total losses (solid lines) obtained as the differ- 
ence between the equilibrium and real specific impulse of a two-dimensional two-phase flow 
is presented in Fig. 4a for the nozzle under consideration. 

The two-phase flow configuration was computed in nozzles of different geometry. An 
axisymmetric conical nozzle with a large magnitude of the throat radius of curvature (R 2 = 
2.01) is shown in Fig. 2a. Its contour consists of the sections: 

i) Cylindrical entrance part (-4.6 ~ x ~ -3.9), y = 4; here and below all the dimensions 
are referred to the radius of the nozzle minimal section r,; 

2) Arcs of a circle of radius R I = 1.15 (-3.9 ~ x ~ -2.94); 

3) Cone with half-angle 01 = 52 ~ (-2.94 ~ x ~ 1.65); 

4) Arcs of a circle wtih radius R= = 2.01 with center on the y axis (-1.65 ~ x ~ 0.74); 

5) Cone with half-angle 02 = 20 ~ (0.74 ~ x ~ 14.6). 

The coordinates of the entrance section are x c = 15.6, Yc = 6.46. All the line segments 
and arcs of circles are mated smoothly and the computations were performed for nozzles with 
different critical section radius. 

This nozzle contour was approximated in a table by using polynomial interpolation [20], 
and the possibility was provided here for both a single approximation of the whole nozzle 
contour and independently in each of the sections. 

The following initial data were taken at the nozzle entrance for a model combustion pro- 
ducts composition [2, 3]: k = 1.14, P0 = 9 MPa, T o = 3100 K, P0 = 8.234 kg/m 3, m = 26.2 kg/ 
kmole, ~0 = 8-937"i0-s kg/(m-C), Pr = 0.69, C B = 1876 J/(kg.K), r s = I0 ~m, and z = 0.32. 

Computations were performed for nozzles with the critical section radius 0.01 m, the 
dimensions and mass fraction of the particles were varied within sufficiently broad limits 
(r s = 0.5-10 ~m, z = 0.1-0.5). 

The Mach number isoline distribution and limit lines of particles of different radii 
are represented in Fig. 2b for a constant weight fraction of condensate z = 0.32. The com- 
parison of the flow parameters on the axis and the wall of the nozzle along the longitudinal 
coordiante (notation the same as in Fig. la) is displayed in Fig. 3 for a model combustion 
product composition. The parameters are given in dimensionless form, which is achieved by 
referring them to the corresponding frozen parameters at the nozzle entrance: the pressure 
to P0, the temperature to T o , the density to P0. Mach number profiles on the axis are pre- 
sented here for a gas without particles (dashed lines) and for a two-phase flow with parti- 
cles of 1 ~m radius for an invariant z equal to 0.32 (Fig. 3b). It is seen that as the 
particle size increases the Mach number profiles for the two-phase flow and the gas without 
particles do not change substantially. This is explained by the diminution in the total 
particle area resulting in a reduction in the energy and momentum transfer between the gas 
and the particles. The same occurs also for a diminution in the weight fraction of conden- 
sate particles. 

Results of computations of a number of two-phase flow integral characteristics are pre- 
sented in Fig. 4. The change in the loss of specific impulse by dissipation and the total 
losses along the nozzle channel is shown in Fig. 4a (dashed lines). Values of the loss by 
dissipation and the two-phase state as the change in the mass flow rate factor ~ at the 
nozzle exit are determined for different z (fig. 4b). The magnitude of the two-phase losses 
was calculated as the difference between single impulses of equilibrium and nonequilibrium 
two-phase axisymmetric flows. The integral characteristics represented, as well as the re- 
sults of computations performed to determine the specific impulse loss for different radii 
of the nozzle critical section are in good agreement with the results of existing computa- 
tions [2, 13]. 

In conclusion, the authors are grateful to A. D. Rychkov for assistance in problem and 
program formulation. 
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NOTATION 

U = ui + vj, velocity vector; i, j, unit vectors of the basic x, y, ~ cylindrical coor- 
dinate system; p, density; p, pressure; T, temperature; CR, C~ are the drag and heat trans- 
fer coefficients, respectively; H0, stagnation enthalpy; Cp/CB, ratio between the specific 
heats of the gas at constant pressure and the particle material; k, gas adiabatic index 
("frozen"); M=lu--u,I/a , Mach number; a, speed of sound; Re = 2rplU--U,I/~ , gas flow Rey- 
nolds number moving relative to the particle of radius rs; ~, gas viscosity coefficient; 
S, gas entropy; z, weight fraction of particles; Y(x), nozzle contour; Ys(x), particle 
limit line; $, q, transformed curvilinear coordinates; x, y, coordinates referred to the 
nozzle critical section radius r,; A, B, C, D vector quantities in (4); m, the mixture 
molecular mass, and Pr, Prandtl number. 

Subscripts: ()x, partial derivative with respect to x; ()y, partial derivative wi~!;h 
respect to y; s, B, values referring to the parameters and the particle material; 0 is the 
value of the parameter at the stagnation point; and n, j, integers. 
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